Preparation of μ -Ph₂PCH₂PPh₂ Platinum(II)-Tungsten (0) , $-Molybdenum(0)$ or $-Chromium(0)$ Complexes by Transmetallation: **Crystal Structure of** $[(p-MeC₆H₄C=CC),Pt(\mu-Ph₂PCH₂PPh₂),W(CO)₃]$

ADRIAN BLAGG, ALAN T. HUTTON, PAUL G. PRINGLE and BERNARD L. SHAW*

School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.

Received Feburary 23,1983

We have described previously the synthesis of platinum-tungsten complexes of type $[(RC=C)_2Pt(\mu$ $dppm$ ₂W(CO)₃] (R = Me, Ph or p-tolyl) formed by the action of trans- $[(RC\equiv C)_2Pt(\eta^1\text{-dppm})_2]$ on fac- $[W(CO)₃(NCMe)₃]$ [1]. These preparations were accompanied by other products which were difficult to remove, including the diplatinum complex $[Pt₂ (C\equiv CR)_{4}(\mu$ -dppm)₂, and the yields were only ca. 40%. We now find that $[(PhC\equiv C)_2Pt(\mu\text{-}dppm)_2$ - $W(CO)₃$] is much better prepared by transmetallation [2] of $[(PhC\equiv C)_2Pt(\mu\text{-}dppm)_2AgCl]$, using fac- $[W(CO)₃(NCMe)₃]$ in boiling benzene (2 h): the isolated yield was 61% and purification was much easier than with the previous method of synthesis $[1]$.

Encouraged by the success in preparing the platinum-tungsten complex by transmetallation we have similarly attempted to prepare corresponding complexes of molybdenum or chromium. Treatment of $[Mo(CO)₃(cycloheptatriene)]$ with an equivalent amount of $[(PhC \equiv C)_2 Pt(\mu\text{-}dppm)_2AgCl]$ in boiling benzene gave $[(PhC\equiv C)_2Pt(\mu\text{-dppm})_2Mo(CO)_3]$ in 72% isolated yield, as orange-red crystals; no other phosphorus-containing product was formed. This formulation is based on microanalytical and IR data and particularly on NMR data, e.g. $^{31}P\cdot{^{1}H}$: δP_A = 2.3 ppm., ${}^{1}J(PtP_{A})$ = 2598 Hz; δP_{B} = 36.4 ppm, $J(D_{1}D_{2})=24 \text{ Hz} \cdot 2\overline{I(D}D_{1}+4\overline{I(D}D_{2})=61 \text{ Hz}^{-1}H_{2}^{131}\text{p}$. \widehat{C} H_z) = 3.71 ppm³ \widehat{I} (PtCH_z) = 36.4 Hz (fluxional) at +20 °C whereas at -60 °C the CH₂ hydrogens are non-equivalent and the complex is non-fluxional). The same complex was formed in high yield when $[Mo(CO)₄(cycloota-1, 5-diene)]$ was treated with $[(PhC\equiv C)_2Pt(\mu\text{-}dppm)_2AgCl]$ but treatment of $[Mo(CO)₄(cyclo-octa-1, 5-diene)]$ with $[(PhC\equiv C)₂ Pt(\eta^1 \text{-} dppm)_2$] gave a mixture of products, including $[Pt_2(C=CPh)_4(\mu\text{-dppm})_2]$, and the desired complex $[(PhC\equiv C)_2Pt(\mu\text{-}dppm)_2Mo(CO)_3]$ was isolated with difficulty and in only 23% yield.

Fig. 1. Molecular structure of $[(p-MeC_6H_4C=C)_2Pt(\mu-Ph_2 PCH_2PPh_2)_2W(CO)_3$. Selected bond lengths: $Pt-P(1)$ 2.307(3), Pt-P(3) 2.302(2), W-P(2) 2.454(3), W-P(4) 2.442(2), Pt-C(3) 2.000(8), C(3)-C(4) 1.19(1), C(5)-C(6) 1.19(l), w-c(7) 2.05(l), W-C(8) 2.04(l), W-C(9) 1.92(l), $C(7) - O(7)$ 1.14(1), $C(8) - O(8)$ 1.14(1), and $C(9) - O(9)$ 1.18(l) A. Selected angles: Pt-C(5)-C(6) 136.8(8), W-C(5)-C(6) 138.4(8), C(5)-C(6)-C(tolyl) 175(1), C(3)-Pt-C(5) 166.7(4), and C(9)-W-C(5) 166.6(4)°.

We have also treated $[Cr(CO)₄(norborna diene)]$ with $[(PhC\equiv C)_2 Pt(\mu\text{-}dppm)_2AgCl]$ in refluxing benzene. This gave, after a few minutes, a deep purple solution which, by $^{31}P\{^1H\}$ NMR spectroscopy, contained only $[(PhC\equiv C)_2Pt(\mu\text{-}dppm)_2AgCl]$ and another species which, from its $^{31}P-{^{1}H}$ NMR parameters, was most likely $[(PhC\equiv C)_2Pt(\mu\text{-}dppm)_2$ - $\text{tr}(\text{CO})_3$] (1) (R = Ph, M = Cr): δP_1 = 5.5 ppm, $J(\vec{P}tP_1) = 2567$ Hz, $\delta P_p = 60.8$ ppm, $3J(\vec{P}tP_p) = 34$ Hz, ${}^{2}J(P_{A}P_{B})$ + ${}^{4}J(P_{A}P_{B})$ = 71 Hz. However, on further boiling this species gradually decomposed, and considerable amounts of $[Pt_2(C=CPh)_4(\mu$ $dppm₂$] and other phosphorus-containing species formed as the platinum-silver complex disappeared. We have thus far been unable to isolate this purple complex in a pure state. When $[Cr(CO)₄(norborna$ diene)] or $[Cr(CO)₃(NCMe)₃]$ was treated with $[(PhC\equiv C)_2Pt(\eta^1\text{-}dppm)_2]$ none of the purple complex was produced, the products being mainly

^{*}Author to whom correspondence should be addressed.

 $[Pt_2(C=CPh)_4(\mu\text{-}dppm)_2]$ and (probably) dppmchromium carbonyl complexes.

Thus transmetallation has distinct advantages for the synthesis of $Pt(\mu$ -dppm)-W, -Mo, or -Cr complexes over direct methods involving n^1 -dppm moieties [1]. Similar attempts to effect transmetallation of silver by tungsten with the monoacetylide complexes of type $[(RC=CC)C]Pt(\mu\text{-}dppm)$, AgCl $[2]$ led to rapid decomposition and no platinumtungsten complex was isolated.

The structure of (1) $(R = p$ -tolyl, $M = W$) has been determined by X-ray crystallography (Fig. 1)*. The 8-membered PtP_4C_2W ring is in the 'boat' conformation and the Pt \cdots W distance 3.037(1) Å is substantially longer that generally accepted for a Pt-W bond (cu. 2.8 A) [3]. *The* two metal centres are asymmetrically bridged by one of the tolylidyne groups such that Pt $-C(5)$ is 2.094(9) Å and W-C(5) is

2.398(9) A. The latter separation is somewhat longer than that $(2.1-2.3 \text{ A})$ found for W-C(alkyl) σ bonds [4], but does constitute a strong interaction which completes the octahedral coordination about the tungsten atom. Uncharacteristically for a semibridging acetylide there is no π -interaction of the $C\equiv C$ acetylenic linkage with either metal atom (see parameters in caption to Fig. 1). We similarly formulate the molybdenum or chromium complexes as (I) $(R = Ph, M = Mo$ or $Cr)$.

Acknowledgements

We thank the S.E.R.C. and the University of Leeds for support and Johnson Matthey Ltd. for the generous loan of platinum salts.

References

- D. M. McEwan, P. G. Pringle and B. L. Shaw, J. *Chem. Sot., Chem. Commun., 859* (1982).
- $\overline{2}$ G. R. Cooper, A. T. Hutton, D. M. McEwan, P. G. Pringle and B. L. Shaw, *Inorg. Chim. Acta*, preceding letter.
- 3 T. V. Ashworth, J. A. K. Howard and F. G. A. Stone, J. *Chem. Sot., Dalton Trans.,* 1609 (1980), and references therein.
- T. V. Ashworth, J. A. K. Howard, M. Laguna and F. G. A. Stone, J. *Chem. Sot., Dalton Trans.,* 1593 (1980) and references therein.

^{}Crystal data: Cfl* Hsa03P4PtW, monoclinic, space group P_{2₁, $a = 11.847(3)$, $b = 16.023(4)$, $c = 18.351(4)$ A, $\beta =$} 116.23(1)^o, $Z = 2$. The current *R* is 0.026 for 4043 independent absorption-corrected F_0 having $I > 2\sigma(I)$. The alternative enantiomorphic specification gave significantly larger R-factors. Pt, W, P and O atoms were assigned anisotropic thermal parameters and hydrogen atoms were included in calculated positions. The aromatic rings were refined as rigid bodies with idealised geometry.